微信公众号
    |    2024年02月01日 05:12:10
学术参考资料
车站深基坑施工承压水突涌预控对策与应急策略
发布时间:2020-07-17 23:02:58      


 

本文选自《上海土木科技》(01

更多精彩文章长按图片识别二维码,一键进入

 image.png

 

 

作者简介

王如路,上海申通地铁集团有限公司副总工程师兼上海轨道交通监护管理办公室主任,上海市政协委员,同济大学兼职教授。国家首届城市轨道交通中青年专家,享受国务院特殊津贴专家,上海市建委科技委地下工程专家,曾获上海市统战先进个人、上海市领军人才、上海市重大工程建设功臣、刘建航院士基金奖励等。长期致力于上海地铁运营隧道结构保护技术的研究与应用,在学科理论、技术研究和施工技术管理等方面取得了系列创新成果。局部冰冻条件下修复运营隧道的泵站地铁隧道大变形的加固微扰动双液注浆关键技术等创新性技术,在全国得到广泛应用和推广;建立了一套五位一体的隧道结构重大风险预警、预控制度,为隧道结构安全做出了重要贡献。

 

引言

在深基坑工程中,当基坑底部到承压含水层顶部的残留土层不能与承压含水层水头顶托力平衡时,基坑底部就会产生突涌。

2019年是上海地铁建设风险大年,车站基坑开挖深,风险点多,有81处施工与⑦层承压水直接联系、75处与2层联系,由于施工环境复杂,地下结构自身接头多,如地下墙接头多(至多6m一条),在不利条件和施工扰动诱发下,容易引发承压水突涌,直接威胁车站施工安全,承压水的突涌如爆发都在瞬间完成,一旦发生承压水突涌,直接影响工程安全与环境安全。如2003年上海地铁4号线董家渡承压水事故引起房屋倒塌、黄浦江防汛墙沉陷,造成巨大经济损失[2]

本文结合上海地区承压含水层的分布特点以及受承压含水层影响的深基坑工程的实践经验,从提高对承压水的认识 、正确预控承压水突涌及如何高效应急处置三方面进行论述相关技术对策,为正确认识和解决基坑工程中的承压水问题提供了有益的参考,以防范化解地铁建设中承压水突涌风险。

 

1 对上海承压水的再认识

上海市位于长江三角洲前缘的南部,除松江西北部有高出地面数十米至百米的零星孤丘外,地势较平坦,从地貌特征上,上海市市区及郊区的大部分地区位于滨海平原区,从地表30m以下分布有五个承压含水层,分别为:⑦层(第层)、⑨层(第层)、⑾层(第层)、⒀(第层)、⒂(第层)层等五层,工程中常涉及到的承压水主要为2砂质粉土微承压含水层;、⑦层粉细砂层及⑨层中粗砂层,其分布及特性如图2所示。

 

image.pngimage.png

image.pngimage.png

image.png 

 

2 上海地区承压水分布示意图

 

1.1上海地区承压含水层特点

2层(微承压含水层)主要是古河道区或古河道区与正常区的交界地带,市中心及北部地区呈零星状分布闵行梅陇地区层顶埋深较浅,约14m18m,市中心及北部地区20m25m,但厚薄不一,一般厚度为4m10m,但在局部地区(如漕河泾地区、世博、前滩)厚度可达15m以上。

⑦层(第一承压含水层)市区广泛分布,北部零星缺失,南部较大范围缺失(全市范围),正常区分布较稳定30m35m,市区西北部20m25m,古河道区域一般缺失1层,2层层顶起伏大,市区中北部35m45m,市区南部45m55m,厚度变化大,市区南部⑦、⑨层沟通区厚度较大,一般为20~30m,市区西北部厚度较薄,为5~10m,总体自西北往东南厚度逐渐加大。市区南部的⑦、⑨层沟通区渗透系数最大,10-4~10-3cm/s,西北部渗透系数较小,10-5~10-4cm/s。众多⑦层承压水地层具有四大特征:埋深大(超20m)、厚度大(1530m)、渗透性大(10-310-4cm/s)、出水量大(单井降压抽水量3050m3/h)。如果其上部的⑥层土缺失,或若⑤2⑦、⑨层承压水连通,一旦发生突涌,对工程本身和环境安全带来的影响很大。

⑨层(第二承压含水层)总体呈现北部浅南部稍深、浦西浅浦东深的特点。浦西层顶埋深一般为6070m左右,浦东大部层顶埋深一般为7080m左右,在陆家嘴-提篮桥-老西门一线最大,一般超过50m,其次为新江湾城-上海北站-静安寺-周家渡-三林一线,层厚一般为3050m左右,其它地区层厚一般为2030m

1.2承压水的危害

上海地区微承压含水层(第2层)和承压含水层(第⑦层、⑨层)对车站隧道工程引起的危害有显著不同,第⑦承压含水层引起的危害更甚,第⑨承压含水层目前地铁一般涉及很少。

承压水引起的事故往往具有突发性、高压性、易发性,发生事故的后果表现为压力大、水量大、发展快、施救难,这主要因为①不同于潜水层的水压随深度渐渐增加的,而承压水地层的水压稳定,因此承压水具有突发性特点。②因其埋深较深,承压水的水压往往是较高。③在高水头压力下,只要基坑围护结构存在细小通道(缝、孔、洞)或薄弱缺陷,粉细颗粒的砂、粉土就会随着水土一起流入,并在较短时间里扩大漏水涌砂通道,形成快速涌入现象,给人留下 “无孔不入的印象。


2 承压水突涌预控对策

深基坑承压水突涌风险主要表现为围护漏水和坑底突涌[3-4]。围护漏水又包括地墙本体和接头漏水,而接头发生漏水的情况更多;坑底突涌包括含各类钻孔封堵不牢引起的承压水突涌、降水不达标致使坑底被承压水顶破、桩周漏水等。针对以上基坑突涌特点,结合深基坑工程经验,基坑承压水突涌预控应从勘察、地墙质量控制、降水设计及施工和基坑开挖四个方面进行控制。

2.1  勘察

1)查清承压水地层情况。工程勘察阶段,应查明下部承压含水层的深度、边界。土层变化位置的勘探点应加密,间距不大于15m

2)水文勘察。经勘察计算有承压水突涌风险的基坑,应实施专门水文勘察,并做抽水试验。

3)查明土层水力参数。查明各土层的承压性,查明各承压含水层的渗透系数、水力联系、涌水量、影响半径等水文地质参数,作为降水设计和实施降压设井的依据。

4)探明地下水位的变化。承压水水位总体稳定,但是受季节及区域工程降水等影响存在一定变化,后续降水设计及开挖应根据水位变化动态调整。

5)合理布置勘探孔。基坑周边的勘探孔应布设在围护结构(地下连续墙)外侧2m 以外,避免开挖过程中由于勘探孔窜孔导致坑边承压水突涌,进而引起围护墙附近水土流失。勘探的波速管(如有)应设置在基坑外侧。

6)重视勘探孔封孔质量。对所有实施的勘探孔(包括废孔)应实施封堵密实,对于深孔应进行注浆封孔,防止开挖过程中承压水在高水压差作用下从孔内突涌。做好放样定位记录备查,并在勘察报告中准确标识所有现场实际孔位的坐标数据。

2.2 地墙质量控制

深基坑围护结构目前深度已经超过100m,上海深隧试验段地墙深度达103-150m,北横通道中山公园工作井地下墙深达118m,宁波儿童公园站地墙深110m。围护在预控承压水突涌方面起决定性作用,而接头又是关键。因此,须从设计、施工及地墙漏水验证及检测等方面进行预控。

2.2.1 设计

1)应优先选择隔断式,以隔断坑内外承压水联系,且止水帷幕至少进入隔水层3m。当止水帷幕无法完全隔断承压水层时,应结合分级按需降水方案和环境保护要求,合理确定隔水帷幕的埋深,根据以往工程案例,止水帷幕底距离降压井井底的竖向距离不小于10-15m时,在满足开挖要求的同时,基坑降水对周边环境影响较小。周红波等根据不同工程案例统计分析悬挂帷幕比隔断式帷幕发生承压水事故占比更高[5]

2)针对大深度地墙优先选择止水性能较好的接头形式:如套铣接头、十字钢板、型钢接头等,并宜对接缝设置MJSRJP、高压旋喷等止水构造措施。环境保护要求高且条件允许时,可在基坑地墙外侧设置超深TRDCSM等第二道止水帷幕。

3)变形协调一致性要求。 当采用水泥土系止水帷幕时(主要指地墙下部接长部分),止水帷幕设计厚度须确保基坑开挖变形后止水的有效性。 

4)浅部防坍措施。异型槽段或浅部存在33层含砂量比较高的地层时,为防止槽壁坍塌,应设置槽壁夹芯加固,以提高槽段的墙体施工质量。黄浦江两岸的3层江滩土砂性含量也大且厚度大、四平路——五角场——新江湾城广泛分布 3层土,应设置槽壁加固。

5)配筋及接驳器要求。地墙配筋、预留接驳器等的间距不应小于规范要求的最小间距,以利于确保墙体混凝土浇筑的密实性,减少深部地墙渗漏风险。应尽量减少或者取消剪力槽的设置,尤其底板位置。

6)新老结构的搭接可靠。当利用老围护结构时,应加强新老止水帷幕交界处的设计措施。止水帷幕施工过程中存在缺陷的区域,应复核补强措施。

7)对墙体质量检测。超深地下连续墙应主动提高声波透射法的检测比例(目前20%),检验墙体混凝土的施工质量,避免局部混凝土不密实造成漏水风险。

2.2.2 施工

1)地墙垂直度保证。①应加强止水帷幕的垂直度控制 ②严格控制导墙的施工 ③成槽的挖槽顺序 ④成槽过程中的垂直度检查 ⑤成槽后的修孔 

2)成槽设备选择。应根据不同深度的地下墙选择与其相匹配的成槽设备,5060m的地墙,可应用金泰SG60以上成槽机,6070m的地墙,可应用金泰SG70以上成槽机或宝峨GB70,深度超70m的地下墙一定要用套铣法接头。 

3)防槽壁坍塌措施。采取合适的清孔设备,严格控制泥浆比重和粘度;也可以考虑采用高导墙方式,加固等措施。要求使用蒙脱石含量高的复合钠基膨润土。

4)泥浆指标管理。确保100%清孔换浆,换浆后比重小于1.1,粘度 “2535。根据经验换浆量可按:液压抓斗机大于3倍,铣槽机按4倍。 

5)沉渣厚度。混凝土浇灌前测量小于15cm或更小,若有怀疑需可采用墙底注浆措施改善。 

6)每幅地墙应连续浇筑完成。浇筑前,应对混凝土和易性、坍落度等进行检查,保障混凝土质量,避免堵管。必要时应增设备用导管,确保地墙浇筑连续。成槽阶段应尽量减小槽段的暴露时间。随着地墙浇筑面的上升,泥浆、水泥浆、砂土等混合物上翻,比重增大,在钢筋密集区易形成夹砂夹泥,影响地墙质量。 

7)接头质量。为保证地下连续墙的接头质量,加强槽段接缝处的刷壁施工质量。铣槽接头泥浆置换要充分,十字钢板接头应采用专门接头箱,严格控制十字钢板、接头箱长度。还应关注首开幅、转角幅(无论是L型还是T型幅)及其他异型槽段接缝处容易发生漏水。建议提高对深地墙接头检测比例。 

8)施工情况记录真实及时。要求如实记录每幅地墙的成槽及浇筑情况,及时记录每幅地墙的垂直度、槽宽、充盈系数等。对充盈系数严重不达标者须列为专项处置,必要情况须引入第三方检测。 

9)墙体检测。用超声波检查发现缺陷的,一般缺陷的应采用旋喷或其他有效的补强措施进行补救,严重缺陷必须重做或补做。建议提高超声波检测的比例,并对异形槽段进行检测。 

2.2.3 地墙漏水验证及检测

开挖前,必须进行地墙止水性能的验证试验与检查,这是检测地墙是否渗漏的一道重要手段。 

1)对超深基坑的地墙应提高采用超声波透射法的检测(对墙体)比例。如检查未通过的,必须采取补救措施。 

2)降水验证密水性。基坑开挖前,可通过试抽水验证地墙的止水性能,验证合格后方可允许开挖施工。 

2.3 降水的设计、施工及运行

2.3.1 设计

1)降水设计专篇应由围护设计单位提出。基于工程勘察、水文勘察结果、工程特点、环境保护等,提出止水帷幕形式,做详细的降压井布置、降压设施设计。

2)井的配置数量足够。降水设计应设置足够数量的减压井、备用井及回灌井等,以确保开挖时可控制承压水位并减轻对周边环境影响。 

3)设回灌井要求。邻近有重要保护对象的区域,应结合现场条件设置承压水回灌井。坑外回灌井间距约10-15m,回灌井与止水帷幕的间距应尽量增大,避免加压回灌时引起围护结构渗水。回灌井的回灌量大致与降压井的抽出水量相当。 

4)重点部位设多功能井。对于保护环境要求高或对地墙施工质量存有怀疑的部位,除实施加固加强措施外,还应在基坑外部对应范围设置观测井,应急时可兼降压井使用。

5)建立按需降水理念 

a)降压少降水,降压至坑内外压力平衡,同样降深情况下抽水量越小越好,抽水量越大,对周边环境影响越大; 

b) 在市中心坚持按需降水,即以控制水头压力为需求,降至坑底以下1.0m-1.5m 

c) 降水井不是越深越好,滤管不是越长越好,应与地层匹配,定向抽水; 

d) 地墙外应多布设坑外水位观察孔,动态反映地墙渗漏,并且可在应急抢险时启动。 

2.3.2 施工

1)严格按设计施工。降水施工单位不得随意在围护设计的降水方案基础上减少,井数、井深均不得少于、短于围护设计所提出的要求。应以井多、井浅为好,不应提倡井深、井少的方式,防止降水漏斗大,对外部影响大。

2)自动监测。降水井应安装水表,计量每井、每日流量,尽可能采用自动计量,当出现水量波动异常时,应及时通知相关方。      

2.3.3 运行

参建各方要高度重视降压井的正常运行,它是保证深基坑开挖施工安全的重要措施之一。

1)秉承以泄压、降压为主的原则,编制详细的降水运行方案,做到按需降水降压,既满足工程需要,又不对环境造成危害。

2)电力、设备完好率保障。保证双电源,可自动切换;对降水设备定期检查,保证设备完好状态,随时可投入运行。

3)自动监控及时报警。高风险工程应采用自动运行、自动计量、自动监控、自动报警。

4)监测准确及时。施工过程中,降压单位应注意保证水位监测的准确性和及时性,当发现承压水水位波动(包括基坑内外的观测井)异常时,应主动加密监测频率并及时通知相关方,及时报警。 

5)井的保护。基坑开挖过程中,对降压井、备用井做显著标识并妥善保护,降压井应保持试抽频率,确认深井的有效性。如出现损坏应及时修复,对靠近地墙或转角部位的降压井重点保护。 

6)记录统计分析。应作好降压记录分析与报警工作,统计记录每口降压井每日出水量,并实际抽水量与前期估算涌水量作对比分析,如有异常应及时提交工程参与各方分析及应对。

7)降水与地层沉降分析。基坑外应布设深层沉降观测点和观测井,沉降观测数据应与水位沉降数据对比分析。

8)应急准备。保障降压井正常运行的人、机、料及应急物资。需要应急预案演练。

9)提醒注意。市区一般不进行坑外降压,因其影响大,应视环境保护情况审慎决定。 

2.4 基坑开挖

控制基坑变形,加快施工进度也是有效预防承压水突涌的有效手段[6] 

1)为基坑和环境安全,执行车站深基坑施工规程、相关标准及管理要求,如车站深基坑施工规程等。 

2)资料准备。现场应备有基坑围护结施工图、施组、工程地质和水文地质资料,记录施工情况和资料等。施工开始后,应及时更新施工资料、监测资料。

3)勘探孔、监测孔排摸。基坑开挖前,应对前期勘探孔的位置和封堵情况进行彻底摸排核查,如发现勘探孔封堵不当或存在突涌隐患时,应采取旋喷加固等措施,防止开挖时发生突涌。 

4)基坑与环境保护标准的执行。应对基坑围护变形控制非常重要(如H×1.4)和经常性漏水检查,并将总的变形控制指标分解到每一层土体的开挖支撑上进行控制。 

5)实施时空效应原理指导施工。认真贯彻 “分段、分层、分块、对称、平衡、限时挖土支撑技术要求。

6)检查巡视工作。施工单位应重视基坑开挖阶段的巡视工作,如发现墙体存在渗漏等,应及时采取针对性处理措施;如监测发现基坑外水位突然下降,需立即核实地墙是否漏水。深基坑的降压井最好做到自动监测、自动抽水、自动报警。 

7)重视减压降水工作。按需适时适量降压,同时加强对坑内外部承压水位观测,有重要保护建筑或构筑物的需设回灌井,当水位下降0.5-0.7m时应启动回灌,可实施常压回灌或带压回灌。

8)最危险节点控制。当深基坑开挖至最后两层土时,一般是承压水发生突涌的最大概率阶段,按需降压降水、快挖快撑、快封底板是防止承压水突涌的有效手段。施工时间长,地墙变形大,都会直接或间接引发承压水突涌,因此需要项目经理、施工总包经理及技术管理领导亲自到现场督导、检查这一阶段的施工,并且增加投入,提高施工效率,快速形成底板。 

9)信息化指导施工。根据深基坑施工规程要求,当监测得到的各类变形超过规定要求时,应采取相应调整施工措施和工程控制措施。重点需要对地墙的沉降与位移、支撑轴力、立柱沉降隆起等进行监测。

10)提请注意。下雨天更应做好基坑排水、降水降压工作,慎防纵向滑坡。 

11)选择结构门洞连通时机。互联互通一票换乘是轨道交通网络化实现的标志,目前还有大量的换乘节点在结构上需要连通。凡需要与在建车站、已建、运营线路相连的,建议选择在基坑底板浇筑完成后再开凿换乘通道的门洞,以防在建车站发生重大风险时导致无法实施救治措施(可为抢险向基坑灌水创造条件)或发生次生灾害影响运营,使事故扩大化。 

 

3 承压水突涌应急策略

抢险不是万能的,但不做抢险准备是万万不行的。应急抢险应做到三早:早发现、早报警、早处置;抢险应先自救,再他救,主要方式为堵、灌

3.1 应急预案制定、落实与准备

在深基坑开挖前,应进行开挖施工条件验收,针对承压水突涌等重大风险源应形成专项的应急预案,建立强有力的应急处理组织架构和指挥体系,按人、机、料、法、环、测+信息现场配备必要的应急物资,并对应急处置进行技术交底和必要的演练,只有落实和准备好人、机、料、法、环、测+信息,当重大风险发生时,才能临危不惧,高效应对

3.2 应急抢险启动

1对基坑和环境安全迅速做出判断

应快速了解现场情况,对基坑安全与发展事态做出初步推断,为决策提供依据。这决策事关工程安全、人员、设备及环境安全,事关抢险方法决定以及人员撤离。但往往由于时间紧张,掌握的资料不一定全面,且需要丰富的设计施工经验。因此在短时间内做到这一点实属不易,但掌握8有助于快速判断基坑安全与否:

 

1)快速了解基坑(外观)情况。围护结构本身外观是否发生了很大沉降、位移、开裂;支撑轴力变化情况,支撑是否产生裂缝或断裂、有声音、脱开;墙幅之间是否发生错动,地墙水平横向裂缝;坑内立柱沉降与隆起,累计变形与变形速率。

2)快速了解是否有异常声音。如支撑开裂、掉落等声音。

3)快速了解水土流失情况。包括承压水突涌时间、涌水部位、涌水流量等

4)快速了解地墙损坏情况。当发现地墙发生大位移或开裂明显或有折断迹象时,如继续发展,基坑非常危险!

5)快速了解地墙变形情况。需要特别注意的是,当地墙位移超H×7 时应特别关注,如地墙位移还迅速增大,风险急剧变大,如超H×8 或更大,基坑状态很危险。

6)快速了解施工情况。

7)快速了解坑外环境变化情况。包括承压水井的水位下降情况,地面沉降、地面开裂、管线变形是否报警、相邻建筑沉降。

8)各项指标快速恶化进展。当基坑出现漏水涌砂、涌水规模较大,一时难以判别是坑底还是地墙涌水,监测数据出现明显增大或无法得到监测数据(得不到)时,且出现上述多种信号快速向恶化趋势发展,应首先考虑撤出一般施工人员,视情况立即组织向坑内灌水,以平衡内外压差。如围护、支撑、立柱桩状况较好,一般不会立即发生突变危险。

2抢险方法

最常见抢险方法是堵和灌,堵——注浆堵漏/辅助内压或内撑;灌 ——灌水平衡基坑外水土压力。应视现场情况采取不同抢险方法,不能一概而论。 

1)当发生小漏时 

①当基坑坑底出现小规模涌水、涌砂,应将坑内所有降压井全部开启,增强抽水效果,必要时可同时开启坑外备用井,并可采用钢管扣住涌水点,钢管周边应注浆填充。同时应检查、分析涌水的可能性问题。多为勘探孔封闭不好、成桩问题引起的,可注浆控制; 

②当漏点为围护结构时,一般先采取引流,然后快速压注聚氨酯浆液堵漏,有时采用双液浆。辅助内压载:采用各类水泥包、沙包等压载,减缓漏水、延长渗漏水路径对堵漏和稳定被动区有很大益处。必要时,增加基坑水平向临时钢支撑。

2)当地墙发生大量涌水时 

多采用外堵辅以内压抢险方法,但当突涌很大或无法控制采用灌水内外平衡。 

①外堵内压:同前 

②内外平衡:包括灌水、砂等,不得已浇筑素砼。 

当发生大量涌水并预估暂无法控制时(且具备回灌条件),可向基坑回灌水。 

③坑外降压。若外部位已存在降压井,如环境条件许可,可考虑在开启基坑外部井降压(若有监测井兼作回灌井),可达到快速降压效果,降低内外压差,为抢险救援争取宝贵时间,也可有效减缓涌水涌砂。再市区施工一般要慎用此法。 

3)当地墙位移大。当地墙发生横向开裂或踢脚严重时,需要快速临时架设内支撑或快速施加内衬+内部回填。 

3监测监控

快速监测检测工作是指导抢险中是十分重要的一环,项目实施前应在关键区段和部位考虑设置多套监测系统,以备不测。一旦发生紧急情况时,应快速采用全站仪等自动化设备对基坑围护位移测量进行临时测量。

 

4 结语

随着基坑开挖深度的增加,涉及承压水的基坑工程承压水问题日益突出,虽然每一个基坑的情况和环境都是不同的,但其控制原理是类似的。即在基坑施工到高风险阶段,要引起重视,增加对施工现场投入,相关各方的领导进驻现场,是一项有效管理措施。

车站深基坑承压水防治手段可总结为6:隔、止、降、控、堵、灌。预控对策为:墙止水、降水压、控变形、快挖快撑、快封底。应急策略:早发现、早报警、早处置,依靠自救+他救,完成堵、灌,实现对地铁车站建设中承压水突涌风险的控制。

 

参考来源

[1] 刘建航,侯学渊. 基坑工程手册[M] . 北京:中国建筑出版社,1997.

[2] 白廷辉,余暄平,曹文宏.上海轨道交通4号线(董家渡)修复工程[M].上海:同济大学出版社,2008.15-27.

[3] 潘伟强.软土地区深基坑工程承压水施工风险控制技术[J].上海建设科技,2014,(6):44-46.

[4] 朱雁飞.深基坑工程风险防控技术探讨 [J].隧道建设, 2013,33(7):545-551.

[5] 周红波,蔡来炳.软土地区深基坑工程承压水风险与控制[J].同济大学学报(自然科学版), 2015,43(1):27-32.

[6] 贾坚,谢小林,翟杰群等.软土基坑变形控制的微扰动技术[J].上海交通大学学报, 2016, 50(10):1651-1657.

 

你知道你的Internet Explorer是过时了吗?

为了得到我们网站最好的体验效果,我们建议您升级到最新版本的Internet Explorer或选择另一个web浏览器.一个列表最流行的web浏览器在下面可以找到.